"

15 Pravila za odvajanje

Izrek 15.1 [9, 10]: Če sta funkciji f in g odvedljivi v točki x, je v tej točki odvedljiva tudi funkcija:

  1. f \pm g in velja (f \pm g)' (x) = f'(x) \pm g'(x),
  2. k \cdot f in velja (k \cdot f)' (x) = k \cdot f'(x),
  3. f \cdot g in velja (f \cdot g)' (x) = f'(x) \cdot g(x) + f(x) \cdot g'(x),
  4. \dfrac{f}{g}, ko je g(x) \neq 0, in velja \left(\dfrac{f}{g}\right)' (x) = \dfrac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)},
  5. g\circ f in velja (g\circ f)' (x) = f'(x) \cdot g'(f(x)).

Tabela odvodov elementarnih funkcij: 

  1. k' = 0 (ker je k poljubna konstanta),
  2. (x^n)' = n x^{n-1}, x' = 1, (x^{-1})'= -x^{-2} = -\frac{1}{x^2},
  3. (e^x)' = e^{x},
  4. (a^x)' = a^{x} \cdot \ln a,
  5. (\ln x)' = \dfrac{1}{x},
  6. (\log_a x)' = \dfrac{1}{x \ln a},
  7. (\sin x)' =  \cos x,
  8. (\cos x)' = - \sin x,
  9. (\tan x)' = \dfrac{1}{\cos^2 x},
  10. (\cot x)' =- \dfrac{1}{\sin^2 x},
  11. (\arcsin x)' = \dfrac{1}{\sqrt{1-x^2}},
  12. (\arccos x)' = -\dfrac{1}{\sqrt{1-x^2}},
  13. (\arctan x)' = \dfrac{1}{1+x^2}.

Primer 15.1: Po formulah tako dobimo:

  1. (x^{10})' = 10x^9, (x^{-5})' = -5x^{-6}, (x^{-\frac{1}{3}})' = -\dfrac{1}{3}x^{-\frac{4}{3}},
  2. (\sqrt[3]{x^2})' = (x^{\frac{2}{3}})' = \dfrac{2}{3} x^{-\frac{1}{3}},
  3. (\sqrt{x^{-3}})' = (x^{-\frac{3}{2}})' = -\dfrac{3}{2} x^{-\frac{5}{2}}.

Primer 15.2: Izračunajmo odvod funkcije.

  1. f(x) = (x^2+x+1)^9.
    f'(x) = 9 \cdot (x^2+ x+1)^8  \cdot (x^2+x+1)'
    = 9 \cdot (x^2+ x+1)^8  \cdot (2x+1).
  2. f(x) = (x^{-2}+x^{-1}+4)^{\frac{2}{5}}.
    f'(x) = \frac{2}{5} \cdot (x^{-2}+x^{-1}+4)^{-\frac{3}{5}}  \cdot (x^{-2}+x^{-1}+4)'
    = \frac{2}{5} \cdot (x^{-2}+x^{-1}+4)^{-\frac{3}{5}}  \cdot (-2x^{-3}-x^{-2}).
  3. f(x) = \sqrt{x^2 - 3 + \dfrac{1}{x}}.
    f'(x) = ((x^2 - 3 + \dfrac{1}{x})^{\frac{1}{2}})'= \dfrac{1}{2} \cdot (x^2 - 3 + \dfrac{1}{x})^{-\frac{1}{2}}  \cdot (x^2 - 3 + \dfrac{1}{x})'
    =\dfrac{1}{2} \cdot (x^2 - 3 + \dfrac{1}{x})^{-\frac{1}{2}}  \cdot (2x - \dfrac{1}{x^2}).
  4. f(x) = e^{x^2}.
    f'(x)=(e^{x^2})' = e^{x^2}\cdot (x^2)' =e^{x^2}\cdot (2x).
  5. f(x) = e^{(x^2 + 3x - 4)}.
    f'(x) = (e^{(x^2 + 3x - 4)})' = e^{(x^2 + 3x - 4)}\cdot (x^2 + 3x - 4)'
    =e^{(x^2 + 3x - 4)}\cdot (2x+3).
  6. f(x) = e^{\sqrt{x}}.
    f'(x) = (e^{\sqrt{x}})' = (\sqrt{x})' \cdot e^{\sqrt{x}} = \dfrac{1}{2\sqrt{x}}\cdot e^{\sqrt{x}}.
  7. f(x) = e^{\sqrt[3]{x^5}}.
    f'(x) = (e^{\sqrt[3]{x^5}})' = e^{\sqrt[3]{x^5}} \cdot (\sqrt[3]{x^5})' = e^{\sqrt[3]{x^5}}\cdot ({x^\frac{5}{3}})' = e^{\sqrt[3]{x^5}}\cdot \dfrac{5}{3} \cdot x^{\frac{2}{3}}.
  8. f(x) = (x+3) \cdot e^{2x}.
    f'(x) = (x+3)' \cdot e^{2x} + (x+3) \cdot (e^{2x})' = e^{2x} + (x+3) \cdot e^{2x} \cdot (2x)'
    = e^{2x} + (x+3) \cdot 2 \cdot e^{2x}.
  9. f(x) = \dfrac{1+\ln x}{1 - \ln (2x)}.

        \begin{align*} f'(x) &= \frac{(1+ \ln x)' \cdot (1 - \ln (2x)) - (1+\ln x) \cdot (1 - \ln(2x))'}{(1-\ln(2x))^2}\\ &= \frac{\dfrac{1}{x} \cdot (1 - \ln (2x)) - (1+\ln x) \cdot (-\dfrac{1}{2x} \cdot 2)}{(1-\ln(2x))^2}\\ &=\frac{(1 - \ln (2x))+(1+\ln x) }{x\cdot (1-\ln (2x))^2}. \end{align*}

  10. f(x) = \ln (\dfrac{x+1}{x-1}).

        \begin{align*} f'(x)& = \frac{1}{\dfrac{x+1}{x-1}}\cdot \left(\frac{x+1}{x-1}\right)'\\ &=\frac{x-1}{x+1}\cdot \frac{(x-1)\cdot (x+1)'-(x+1)\cdot (x-1)'}{(x-1)^2}\\ &=\frac{x-1-(x+1)}{(x+1)(x-1)}=-\frac{2}{x^2-1}. \end{align*}

  11. f(x)= \sqrt{\ln (2x)}.

        \begin{align*} f'(x)& =(\sqrt{\ln (2x)})' = \left[(\ln (2x))^{\frac{1}{2}}\right]' = \frac{1}{2} (\ln (2x))^{-\frac{1}{2}} \cdot (\ln (2x))'\\ &= \frac{1}{2} (\ln (2x))^{-\frac{1}{2}} \cdot \frac{1}{2x}\cdot (2x)'= \frac{1}{2\sqrt{\ln (2x)}}\cdot \frac{1}{2x}\cdot 2\\ &=\frac{1}{2x\sqrt{\ln (2x)}}. \end{align*}

  12. f(x) = \ln (\sin x).
    f'(x) =\left[\ln (\sin x)\right]' = \dfrac{1}{\sin x}\cdot (\sin x)'= \dfrac{1}{\sin x}\cdot \cos x = \cot x.
  13. f(x) = \sin {\sqrt{x}}
    f'(x) = (\sin {\sqrt{x}})'=\cos {\sqrt{x}}\cdot (\sqrt{x})'= \cos {\sqrt{x}} \cdot \frac{1}{2} x^{-\frac{1}{2}}= \cos {\sqrt{x}} \cdot \dfrac{1}{2\sqrt{x}}.

Primer 15.3: Izračunajmo odvod funkcije f(x) = x^x.

Najprej dano funkcijo napišemo kot eksponentno funkcijo

    \[f(x) = x^x= e^{\ln (x^x)} = e^{x \cdot \ln x}\]

in potem izračunamo

    \begin{align*} f'(x) &= (e^{x \cdot \ln x})'= e^{x \cdot \ln x} \cdot (x \cdot \ln x)'\\ &= e^{x \cdot \ln x} \cdot (x' \cdot \ln x + x \cdot (\ln x)')\\ &= e^{x \cdot \ln x} \cdot (\ln x +1). \end{align*}

License

Pravila za odvajanje Copyright © 2024 by University of Nova Gorica Press. All Rights Reserved.